Curtain wall structural calculation report

[Document Number] Rev. 00

Site:

Contents

1. Introduction
1.1 Object location
1.2 Calculation method
1.3 Material and profiles
1.4 Construction
2. Curtain wall A structural calculation
2.1 Profiles cross-sections
2.2 Calculation scheme and supports conditions12
2.3 Loads
2.4 Load combinations
3. Results of structural calculation
3.1 Deformation of FEA model 21
3.2 Internal forces
3.3 Support reactions
3.4 Serviceability limit state (SLS) design
4. Bracket calculations
4.1 Bracket type KR-1
4.2 Bracket type KR-2 33
4.3 Bracket type KR-3
4.4 Bracket type KR-4 43
4.5 Bracket type KR-5 49
4.6 Bracket type KR-6 51
4.7 Bracket type KR-7 54

1. Introduction

1.1 Object location

Object .

1.2 Calculation method

Structural calculations and design were performed based on following standards:

1. Loads:

- self-weight, imposed loads -group of BS EN 1991-1-1+NA;
- wind group of BS EN 1991-1-4+NA;
- snow group of BS EN 1991-1-3+NA;
- load combinations BS EN 1990 + NA.

2. Steel design:

- BS EN 1993+NA;
- BS EN 1993-1-5;
- BS EN 1993-1-8.
 - 3. Aluminium design:
- BS EN 1999+NA.
 - 4. Curtain walls:

- BS EN 13830+NA.

Structural calculations were performed in the FEM program RFEM 6.02.

1.3 Material and profiles

1.3.1 Curtain wall 23-08 Elevation A is a stick system of glass structural façade, consisting of aluminium vertical profiles (mullions), horizontal profiles (transoms) and glass units.

Following elements are utilized according to the catalogue of aluminium profiles "CW50 Reynaers Aluminium" :

- vertical profiles (mullions) - art. 034.2503;

- horizontal profiles (transoms) - art. 034.3525;

- reinforcment - art. 034.5593.00.

Dimensions of profile cross-sections see chapter 2.1.

1.3.2 Curtain wall are supported by steel frame (horizontal beams and posts) and concrete walls by means of designed steel brackets.

Steel frame (horizontal beams and posts) and concrete walls are costumer's responsibility.

1.3.3 Material of profiles – aluminium, alloy EN 6060 (ET,EP,ER/B) T6.

Table 1.3.1 Material properties of aluminium (extract from RFEM 6.02)

Description	Symbol	Value	Unit	
Basic Properties				
Modulus of elasticity	E	70000.0	N/mm ²	
Shear modulus	G	27000.0	N/mm ²	
Poisson's ratio	ν	0.300		
Mass density	ρ	2700.00	kg/m ³	
Specific weight	γ	27.00	kN/m³	
Coefficient of thermal expansion	α	0.000023	1/°C	
Characteristic value of 0.2% proof strength	fo	140.000	N/mm ²	
Characteristic value of ultimate strength	fu	170.000	N/mm ²	
0.2% proof strength in heat affected zone, HAZ	f o,haz	60.000	N/mm ²	
Ultimate strength in heat affected zone, HAZ	f u,haz	100.000	N/mm ²	
Ratio between 0.2% proof strength in HAZ and in parent material	ρo,haz	0.430		
Ratio between ultimate strength in HAZ and in parent material	ρu,haz	0.590		
Additional Information				
Temper T6				

1.3.4 Material for support brackets - carbon steel S355.

Table 1.3.2 Material properties of steel (extract from RFEM 6.02)

Description	Symbol	Value	Unit	
Basic Properties				
Modulus of elasticity	E	210000.0	N/mm ²	
Shear modulus	G	80769.2	N/mm ²	
Poisson's ratio	v	0.300		
Mass density	ρ	7850.00	kg/m ³	
Specific weight	γ 78.50		kN/m³	
Coefficient of thermal expansion	α	α 0.000012		
Thickness rar	nge No. 1			
Maximum thickness	t _{max}	40.0	mm	
Yield strength	fy	355.000	N/mm ²	
Ultimate strength	fu	490.000	N/mm ²	
Weld Prop	oerties			
Correlation factor	βw	0.900		

1.4 Construction

In the case when the entire construction is not completed according to further calculation, it can cause the entire construction or connection instability or collapse. All fasteners (bolts, anchors etc.) need to be installed according to manufacturer instructions.

2. Curtain wall A structural calculation

2.1 Profiles cross-sections

Cross-sections of aluminium profiles are created in the program Dlubal RSECTION 1. Cross-sections were calculated and values of their geometric characteristics were determined.

Verification of modelled sections were performed comparing with essential values (moment of inertia I, section modulus W) from the catalogue of aluminium profiles "CW50 Reynaers Aluminium". Following sections have been modelled and calculated:

1. Transom (art. 034.3525).

E	A dm²/m	dm²/m	Lm	lx cm⁴	Wx cm ³	ax mm	ly cm⁴	Wy cm ³	ay mm	x
034.3520.XX	20.58	1.1	7.00	0.384	0.322	11.93	3.070	1.228	25.00	· Y Y
034.3521.XX	24.35	9.8	7.00	3.608	1.824	19.78	8.243	3.297	25.00	Χ́0
034.3522.XX	28.85	14.3	7.00	14.897	5.134	29.02	12.707	5.082	25.00	
034.3523.XX	32.51	18.5	7.00	38.079	9.595	39.69	18.515	7.405	25.00	
034.3524.XX	36.71	22.7	7.00	71.612	14.272	49.32	23.098	9.239	25.00	
034.3525.XX	40.91	26.9	7.00	118.387	19.337	59.28	27.268	10.906	25.00	
034.3526.XX	45.11	31.1	7.00	205.583	28.900	71.14	39.544	15.817	25.00	
034.3527.XX	49.31	35.3	7.00	297.468	36.554	81.38	45.472	18.181	24.99	
034.3528.XX	53.51	39.5	7.00	412.021	44.867	91.67	51.400	20.551	24.99	
034.3529.XX	57.71	43.7	7.00	551.562	53.808	101.99	57.328	22.920	24.99	

Fig. 2.1.1 Transom art. 034.3525 (extract from catalogue "CW50 Reynaers Aluminium")

Section Properties | 0343525 (transom)

	Section Values Stress Points			
	Sectional Area			
	Sectional area	Α	6.76 cm ²	2
	Geometric sectional area	Ageom	6.76 cm ²	2
		rigeoni		
ר ז	😑 Bending			
	Location of centroidal axis in v-direction	ev	25.0 mm	
	Location of centroidal axis in z-direction	ez	61.2 mm	
2	Area moment of inertia about y-axis	ly.	118.31 cm ⁴	Π
	Area moment of inertia about z-axis	lz	27.25 cm ⁴	5
	Product of inertia about y,z-axes	lvz	-0.01 cm ⁴	4
	Area moment of inertia about u-axis	lu	118.31 cm ⁴	1
	Area moment of inertia about v-axis	lv	27.25 cm ⁴	4
	Polar area moment of inertia	lp	145.56 cm ⁴	4
	Polar area moment of inertia with respect to shear center	lp,SC	148.63 cm ⁴	4
	Inclination of principal axes	α	0.00 deg	1
/ v	Radius of gyration about y-axis	iy	41.8 mm	
	Radius of gyration about z-axis	iz	20.1 mm	1
	Radius of gyration about y,z-axes	İyz	0.4 mm	1
	Radius of gyration about u-axis	iu	41.8 mm	
	Radius of gyration about v-axis	iv	20.1 mm	1
	Polar radius of gyration	ip	46.4 mm	
	Polar radius of gyration with respect to shear center	ip,SC	46.9 mm	1
	Elastic section modulus about y-axis	Wy,min	-19.32 cm ³	3
	Elastic section modulus about y-axis	Wy, max	19.96 cm ³	1
	Elastic section modulus about z-axis	Wz,min	-10.90 cm ³	5
(<u></u>	Elastic section modulus about z-axis	Wz, max	10.90 cm ³	3
	Elastic section modulus about u-axis	Wu,min	-19.33 cm ³	3
	Elastic section modulus about u-axis	Wu, max	19.95 cm ³	3
	Elastic section modulus about v-axis	Wv,min	-10.90 cm ³	3
	Elastic section modulus about v-axis	Wv,max	10.90 cm ³	3
i i	Elastic section modulus about y-axis	Wy	19.32 cm ³	3
1	Elastic section modulus about z-axis	Wz	10.90 cm ³	3
Ζ'	Elastic section modulus about u-axis	Wu	19.33 cm ³	3
	Elastic section modulus about v-axis	Wv	10.90 cm ³	3

CW 50-MT

2. Mullion (art. 034.2503)

DRAAGPROFIEL MENEAU SUSPENSION PROFILE PFOSTENPROFIL

Ē	dm²/m	dm²/m	Lm	lx cm⁴	Wx cm ³	ax mm	ly cm⁴	Wy cm ³	ay mm	Y
034.2500.XX	35.46	13.3	7.00	13.720	4.359	31.48	13.741	5.496	25.00	x
034.2501.XX	39.66	17.5	7.00/5.00	33.247	8.346	39.31	18.327	7.331	25.00	0 Ý
034.2502.XX	43.86	21.7	7.00/5.00	66.660	12.927	48.58	23.767	9.507	25.00	
034.2503.XX	48.06	25.9	7.00/5.00	117.658	18.745	58.38	28.103	11.241	25.00	
034.2504.XX	48.06	25.9	7.00	150.770	23.320	64.65	32.893	13.157	25.00	
034.2505.XX	52.26	30.1	7.00	201.687	28.112	70.41	37.032	14.812	25.00	
034.2506.XX	56.46	34.3	7.00/5.00	297.277	36.009	80.59	42.392	16.956	25.00	
034.2507.XX	57.12	35.0	7.00	403.011	43.458	92.74	46.040	18.416	25.00	
034.2508.XX	60.66	38.5	7.00	503.535	51.251	98.25	53.283	21.313	25.00	
034.2509.XX	64.86	42.7	7.00	695.156	63.478	109.51	62.735	25.093	25.00	

Fig. 2.1.3 Mullion art. 034.2503 (extract from catalogue "CW50 Reynaers Aluminium")

Fig. 2.1.4 Mullion cross-section and its properties (extract from RFEM 6.02)

3. Reinforcement (art. 034.5593.00).

CW 50-MT

VERBINDINGS- EN DILATATIEPROFIEL PROFILE DE RACCORDEMENT ET DILATATION CONNECTION AND EXPANSION PROFILE VERBUND- UND AUSDEHNUNGSPROFIL

Ē	dm²/m	dm²/m	Lm	lx cm⁴	Wx cm ³	ax mm	ly cm⁴	Wy cm ³	ay mm	Y
034.5591.00	28.65	-	7.00	15.070	6.912	21.80	9.641	4.382	22.00	- x <u> </u>
034.5592.00	33.00	-	7.00	41.766	12.944	32.27	12.189	5.540	22.00	0 Ý
034.5593.00	37.11	-	7.00	82.314	19.529	42.15	14.532	6.605	22.00	
034.5594.00	41.03	-	7.00	145.690	27.500	52.92	16.749	7.790	21.50	
034.5595.00	45.21	-	7.00	230.512	36.347	63.38	19.082	8.875	21.50	
034.5596.00	48.85	-	7.00	326.437	44.863	72.74	21.304	10.049	21.20	
034.5597.00	55.52	-	7.00	513.320	61.734	83.15	23.360	10.240	19.19	
034.5598.00	61.12	-	7.00	809.712	77.751	104.14	26.691	12.894	20.70	

Fig. 2.1.5 Reinforcement art. 034.5593.00 (extract from catalogue "CW50 Reynaers Aluminium")

	Section Values Stress Points			
	E Sectional Area		0.04	2
(//////////////////////////////////////	 Sectional area	A	9.04 ch	m≏ 2
	Geometric sectional area	Ageom	9.04 cn	m-
	🗇 Bendina			
	Location of centroidal axis in v-direction	ev	22.0 m	ım
	Location of centroidal axis in z-direction	e7	42.1 m	ım
	Area moment of inertia about v-axis	ly.	81.91 cn	m4
	Area moment of inertia about z-axis	17	14.50 cn	m4
	Product of inertia about vz-axes	. <u>.</u> Ivz	0.00 cn	 m4
	Area moment of inertia about u-axis	-92 lu	81.91 cn	m4
	Area moment of inertia about v-axis	lv.	14.50 cn	m4
	Polar area moment of inertia	lp.	96.41 cn	m4
	Polar area moment of inertia with respect to shear center	lp.SC	96.41 cn	m4
	Inclination of principal axes	α	0.00 de	eq
	 Radius of gyration about y-axis	iv	30.1 m	ım
	Radius of gyration about z-axis	iz	12.7 m	ım
	Radius of gyration about y,z-axes	ivz	0.1 m	ım
	Radius of gyration about u-axis	iu	30.1 m	ım
	Radius of gyration about v-axis	iv	12.7 m	ım
	Polar radius of gyration	ip	32.7 m	ım
	Polar radius of gyration with respect to shear center	ip,SC	32.7 m	ım
	Elastic section modulus about y-axis	Wy,min	-19.43 cn	m ³
	Elastic section modulus about y-axis	Wy, max	19.43 cn	m ³
	Elastic section modulus about z-axis	Wz,min	-6.59 cn	m ³
	Elastic section modulus about z-axis	Wz, max	6.59 cn	m ³
	Elastic section modulus about u-axis	Wu, min	-19.43 cn	m ³
	Elastic section modulus about u-axis	Wu, max	19.43 cn	m ³
//////////////////////////////////////	Elastic section modulus about v-axis	Wv,min	-6.59 cn	m ³
	Elastic section modulus about v-axis	Wv,max	6.59 cn	m ³
2	Elastic section modulus about y-axis	Wy	19.43 cn	m ³
	Elastic section modulus about z-axis	Wz	6.59 cn	m ³
	Elastic section modulus about u-axis	Wu	19.43 cn	m ³
	Elastic section modulus about v-axis	Wv	6.59 cn	m ³

Section Properties | 0345593 (reinforcment)

Fig. 2.1.6 Reinforcement cross-section and its properties (extract from RFEM 6.02)

4. Mullion (art. 034.2503) with inner reinforcement (art. 034.5593.00).

Section Properties | 0342503+0345593 (mullion+reinforcment)

	Section Values Stress Points			
	Sectional Area			
	Sectional area	A	16.68	cm ²
	Geometric sectional area	Ageom	16.68	cm ²
	Bending			
	Location of centroidal axis in y-direction	ey	25.0	mm
	Location of centroidal axis in z-direction	ez	54.1	mm
	Area moment of inertia about y-axis	ly	209.99	cm ⁴
	Area moment of inertia about z-axis	Iz	42.59	cm ⁴
	Product of inertia about y,z-axes	lyz	0.00	cm ⁴
	Area moment of inertia about u-axis	lu	209.99	cm ⁴
	Area moment of inertia about v-axis	lv	42.59	cm ⁴
	Polar area moment of inertia	lp	252.58	cm ⁴
	Polar area moment of inertia with respect to shear center	lp,SC	255.78	cm ⁴
	Inclination of principal axes	α	0.00	deg
	Radius of gyration about y-axis	iy	35.5	mm
	Radius of gyration about z-axis	iz	16.0	mm
	Radius of gyration about y,z-axes	iyz	0.2	mm
	Radius of gyration about u-axis	iu	35.5	mm
	Radius of gyration about v-axis	İv	16.0	mm
	Polar radius of gyration	ip	38.9	mm
	Polar radius of gyration with respect to shear center	ip,SC	39.2	mm
	Elastic section modulus about y-axis	Wy,min	-38.78	cm ³
	Elastic section modulus about y-axis	Wy,max	31.34	cm ³
	Elastic section modulus about z-axis	Wz,min	-17.04	cm ³
	Elastic section modulus about z-axis	Wz, max	17.03	cm ³
	Elastic section modulus about u-axis	Wu,min	-38.78	cm ³
	Elastic section modulus about u-axis	Wu, max	31.34	cm ³
	Elastic section modulus about v-axis	Wy,min	-17.04	cm ³
	Elastic section modulus about v-axis	Wv,max	17.04	cm ³
	Elastic section modulus about y-axis	Wy	31.34	cm ³
	Elastic section modulus about z-axis	Wz	17.03	cm ³
	Elastic section modulus about u-axis	Wu	31.34	cm ³
zŤ	Elastic section modulus about v-axis	Wv	17.04	cm ³

Fig. 2.1.7 Mullion art. 034.2503 with inner reinforcement art. 034.5593.00 section and its properties (extract from RFEM 6.02)

5. Double mullion (2 x art. 034.2503) and fixing aluminium angle 80x80x6 mm.

Fig. 2.1.8 Double mullion (2 x art. 034.2503) and fixing aluminium angle 80x80x6 mm cross-section

Fig. 2.1.9 Mullion art. 034.2503 with inner reinforcement art. 034.5593.00 section and its properties (extract from RFEM 6.02)

6. Double mullion (2 x art. 034.2503) with inner reinforcement (2 x art. 034.5593.00) and fixing aluminium angle 80x80x6 mm.

Fig. 2.1.10 Double mullion (2 x art. 034.2503) with inner reinforcement (2 x art. 034.5593.00) and fixing aluminium angle 80x80x6 mm cross-section

Fig. 2.1.11 Mullion art. 034.2503 with inner reinforcement art. 034.5593.00 section and its properties (extract from RFEM 6.02)

2.2 Calculation scheme and supports conditions

2.2.1 FEA model of curtain wall A is created in order to perform static analysis and calculations.

Horizontal and vertical profiles have been modelled as beams (members) in RFEM 6.02.

2.2.2 Cross-sections for members are created in the program Dlubal RSECTION 1 (see chapter 2.1).

Fig. 2.2.1 Curtain wall 23-08 Elevation A drawing

0.005

Fig. 2.2.3 Profiles sections in thermal extension gap (extract from RFEM 6.02)

2.2.3 According to the static scheme of the curtain wall, self weight has to cause compression forces in the vertical elements (mullions).

In order to meet this requirement, bearing supports (carrying wind and dead load) are placed on the bottom parts of mullions. Assigned supports are shown in the fig. 2.2.4.

Fig. 2.2.4 FEA model with assigned supports (extract from RFEM 6.02). Red frame - wind+dead load supports, blue frame - wind load supports.

2.3 Loads

Following loads are applied to the calculation scheme:

- self weight of aluminium profiles;
- self weight of glass units;
- wind pressure;
- wind suction;
- snow weight;
- imposed horizontal barrier load.

Loads and their magnitudes are shown in the table 2.3.1.

Load	Load Case	Action Category	Load type	Load magnitude	Notico
Case	Description	EN 1990-1-1	Load type	(characteristic value)	Notice
LC1	Dead load (self- weight) :				

Table 2.3.1 Loads and their magnitudes

	aluminium	Permanent	Uniform	According to	1. Automatically accounted
	profiles	Fermanent	force	profile weight	by RFEM 6.02.
	glass units	Permanent	Concentrat ed force	Vary according to the glass units weight	 Eccentricity 109 mm relatively to shear centre. Distributed between to points (150 mm from the profile start and profile end).
LC2	Wind pressure load	Wind	Surface load	2.92 kN/m ²	 Distributed between transoms and mullions.
LC3	Wind suction load	Wind	Surface load	1.85 kN/m ²	 Distributed between transoms and mullions.
LC4	Snow load	Snow	Uniform force	0.5 kN/m	
LC5	Imposed load "+" outside pressure	Imposed Ioad (category C.3)	Uniform force	1 kN/m	 Distributed between mullions (1.2 m height from the floor level). According table 6.12 EN 1990-1-1.
LC6	Imposed load "-" inside pressure	Imposed Ioad (category C.3)	Uniform force	1 kN/m	 2. Distributed between mullions (1.2 m height from the floor level). 3. According table 6.12 EN 1990-1-1.

Fig. 2.3.1 FEA model with applied dead load (extract from RFEM 6.02)

Fig. 2.3.2 FEA model with applied wind pressure (extract from RFEM 6.02)

Fig. 2.3.3 FEA model with applied wind suction (extract from RFEM 6.02)

Fig. 2.3.4 FEA model with applied snow load (extract from RFEM 6.02)

Fig. 2.3.5 FEA model with applied imposed load "+" outside pressure (extract from RFEM 6.02)

2.4 Load combinations

Load combinations are generated according to EN 1990-1-1 (equation 6.10). Load combinations are shown in the table 2.4.1.

	Load	Load		LC.1		LC.2		3	LC.4	
	Combin.	Name	Factor	No.	Factor	No.	Factor	No.	Factor	No.
	CO1	1.35 * LC1	1.35	LC1						
	CO2	1.35 * LC1 + 1.50 * LC2	1.35	LC1	1.50	LC2				
	CO3	1.35 * LC1 + 1.50 * LC3	1.35	LC1	1.50	LC3				
	CO4	1.35 * LC1 + 1.50 * LC2 + 0.75 * LC4	1.35	LC1	1.50	LC2	0.75	LC4		
	CO5	1.35 * LC1 + 1.50 * LC3 + 0.75 * LC4	1.35	LC1	1.50	LC3	0.75	LC4		
	CO6	1.35 * LC1 + 1.50 * LC2 + 0.75 * LC4 + 1.05 * LC5	1.35	LC1	1.50	LC2	0.75	LC4	1.05	LC5
	C07	1.35 * LC1 + 1.50 * LC2 + 0.75 * LC4 + 1.05 * LC6	1.35	LC1	1.50	LC2	0.75	LC4	1.05	LC6
ULS	CO8	1.35 * LC1 + 1.50 * LC3 + 0.75 * LC4 + 1.05 * LC5	1.35	LC1	1.50	LC3	0.75	LC4	1.05	LC5
	CO9	1.35 * LC1 + 1.50 * LC3 + 0.75 * LC4 + 1.05 * LC6	1.35	LC1	1.50	LC3	0.75	LC4	1.05	LC6
	CO10	1.35 * LC1 + 1.50 * LC2 + 1.05 * LC5	1.35	LC1	1.50	LC2	1.05	LC5		
	CO11	1.35 * LC1 + 1.50 * LC2 + 1.05 * LC6	1.35	LC1	1.50	LC2	1.05	LC6		
	CO12	1.35 * LC1 + 1.50 * LC3 + 1.05 * LC5	1.35	LC1	1.50	LC3	1.05	LC5		
	CO13	1.35 * LC1 + 1.50 * LC3 + 1.05 * LC6	1.35	LC1	1.50	LC3	1.05	LC6		
	CO14	1.35 * LC1 + 1.50 * LC4	1.35	LC1	1.50	LC4				

Table 2.4.1 Loads combinations

	CO15	1.35 * LC1 + 0.90 * LC2 + 1.50 * LC4	1.35	LC1	0.90	LC2	1.50	LC4		
	CO16	1.35 * LC1 + 0.90 * LC3 + 1.50 * LC4	1.35	LC1	0.90	LC3	1.50	LC4		
		1.35 * LC1 + 0.90 * LC2 + 1.50 * LC4 +								
	CO17	1.05 * LC5	1.35	LC1	0.90	LC2	1.50	LC4	1.05	LC5
	6040	1.35 * LC1 + 0.90 * LC2 + 1.50 * LC4 +	4.25	1.04		1.62	4 50		4.05	1.00
	CO18	1.05 * LCb	1.35	LCI	0.90	102	1.50	LC4	1.05	LC6
	CO19	1.05 * 1.05	1.35	LC1	0.90	1C3	1.50	1C4	1.05	1.05
	0010	1.35 * LC1 + 0.90 * LC3 + 1.50 * LC4 +	2.00		0.00		2.00		2.00	
	CO20	1.05 * LC6	1.35	LC1	0.90	LC3	1.50	LC4	1.05	LC6
	CO21	1.35 * LC1 + 1.50 * LC4 + 1.05 * LC5	1.35	LC1	1.50	LC4	1.05	LC5		
	CO22	1.35 * LC1 + 1.50 * LC4 + 1.05 * LC6	1.35	LC1	1.50	LC4	1.05	LC6		
	CO23	1.35 * LC1 + 1.50 * LC5	1.35	LC1	1.50	LC5				
	CO24	1.35 * LC1 + 1.50 * LC6	1.35	LC1	1.50	LC6				
	CO25	1.35 * LC1 + 0.90 * LC2 + 1.50 * LC5	1.35	LC1	0.90	LC2	1.50	LC5		
	CO26	1.35 * LC1 + 0.90 * LC2 + 1.50 * LC6	1.35	LC1	0.90	LC2	1.50	LC6		
	CO27	1.35 * LC1 + 0.90 * LC3 + 1.50 * LC5	1.35	LC1	0.90	LC3	1.50	LC5		
	CO28	1.35 * LC1 + 0.90 * LC3 + 1.50 * LC6	1.35	LC1	0.90	LC3	1.50	LC6		
ULS		1.35 * LC1 + 0.90 * LC2 + 0.75 * LC4 +	_		_					
	CO29	1.50 * LC5	1.35	LC1	0.90	LC2	0.75	LC4	1.50	LC5
	CO30	1.35 * LC1 + 0.90 * LC2 + 0.75 * LC4 +	1 35	101	0 90	102	0 75	104	1 50	106
		1.35 * LC1 + 0.90 * LC3 + 0.75 * LC4 +	1.00	201	0.50	202	0.75	201	1.00	200
	CO31	1.50 * LC5	1.35	LC1	0.90	LC3	0.75	LC4	1.50	LC5
		1.35 * LC1 + 0.90 * LC3 + 0.75 * LC4 +								
	CO32	1.50 * LC6	1.35	LC1	0.90	LC3	0.75	LC4	1.50	LC6
	CO33	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC5	1.35	LC1	0.75	LC4	1.50	LC5		
					~					
	CO34	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6	1.35	LC1	0.75	LC4	1.50	LC6		
	CO34	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6	1.35	LC1	0.75	LC4	1.50	LC6		
	CO34 CO35	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1	1.35	LC1 LC1	0.75	LC4	1.50	LC6		
	CO34 CO35 CO36	LC1 LC1 + LC2	1.35 1.00 1.00	LC1 LC1 LC1	1.00	LC4 LC2	1.50			
	CO34 CO35 CO36 CO37	LC1 LC1 + LC2 LC1 + LC3	1.35 1.00 1.00 1.00	LC1 LC1 LC1 LC1	0.75 1.00 1.00	LC2 LC3	1.50			
	CO34 CO35 CO36 CO37 CO38	LC1 LC1 + LC2 LC1 + LC3 LC1 + LC2 + 0.50 * LC4	1.35 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1	1.00 1.00 1.00	LC2 LC3 LC2	0.50	LC6		
	CO34 CO35 CO36 CO37 CO38 CO39	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC2 + 0.50 * LC4 LC1 + LC3 + 0.50 * LC4	1.35 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1	1.00 1.00 1.00 1.00	LC2 LC3 LC2 LC3	0.50	LC6 LC4 LC4		
	CO34 CO35 CO36 CO37 CO38 CO39 CO40	LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4	1.35 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC2 LC3 LC2 LC3 LC2 LC2	1.50 0.50 0.50 0.50	LC6 LC4 LC4 LC4	0.70	LC5
	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC2 + 0.50 * LC4 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC3 LC2 LC3 LC2 LC2 LC2 LC2	1.50 0.50 0.50 0.50 0.50	LC6 LC4 LC4 LC4 LC4 LC4	0.70	LC5 LC6
	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC5 \\ \end{array}$	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC2 LC3 LC2 LC3 LC2 LC2 LC2 LC2	1.50 0.50 0.50 0.50 0.50 0.50	LC6 LC4 LC4 LC4 LC4 LC4 LC4	0.70	LC5 LC6 LC5
	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO41 CO42 CO43	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ \end{array}$	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC3 LC2 LC3 LC2 LC2 LC2 LC2 LC2 LC3 LC3	1.50 0.50 0.50 0.50 0.50 0.50 0.50	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4	0.70 0.70 0.70 0.70	LC5 LC6 LC5 LC6
	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO41 CO42 CO43 CO43 CO44	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.70 * LC5 \\ \end{array}$	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC2 LC3 LC2 LC2 LC2 LC2 LC3 LC3 LC3 LC2	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5	0.70 0.70 0.70 0.70	LC5 LC6 LC5 LC6
	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO41 CO42 CO43 CO44 CO44	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC6 \\ \end{array}$	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC3 LC2 LC2 LC2 LC2 LC2 LC2 LC3 LC2 LC2 LC2	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.7	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6	0.70 0.70 0.70 0.70	LC5 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO41 CO42 CO43 CO44 CO45 CO46	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC5 \\ \end{array}$	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC2 LC3 LC2 LC2 LC2 LC2 LC3 LC2 LC2 LC2 LC2 LC2	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.7	LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC5	0.70 0.70 0.70 0.70	LC5 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO46 CO47	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC5 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC5 \\ LC1 + LC3 + 0.70 * LC6 \\ \end{array}$	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC2 LC2 LC2 LC2 LC2 LC2 LC3 LC2 LC3 LC2 LC2 LC3 LC2 LC3 LC2 LC3	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 0.70	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC5 LC6	0.70 0.70 0.70 0.70	LC5 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO45 CO46 CO47 CO48	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC5 LC1 + LC2 + 0.70 * LC5 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC2 LC2 LC3 LC2 LC2 LC2 LC2 LC3 LC2 LC2 LC3 LC2 LC3 LC3 LC3 LC3 LC3	1.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC5 LC6	0.70 0.70 0.70 0.70	LC5 LC6 LC6 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO46 CO47 CO48 CO49	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC5 LC1 + LC2 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC4 LC1 + 0.60 * LC2 + LC4	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60	LC2 LC2 LC2 LC2 LC2 LC2 LC2 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC2 LC3 LC3 LC3 LC2	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC5 LC6 LC5 LC6	0.70 0.70 0.70 0.70	LC5 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO49 CO50	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC4 \\ LC1 + 0.60 * LC2 + LC4 \\ LC1 + 0.60 * LC3 + LC4 \\ \end{array}$	1.35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60	LC2 LC2 LC3 LC2 LC2 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC3 LC3 LC3 LC3 LC3 LC3 LC3 LC3	1.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC5 LC6 LC6 LC6	0.70 0.70 0.70 0.70	LC5 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO49 CO50 CO51	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC4 \\ LC1 + 0.60 * LC2 + LC4 \\ LC1 + 0.60 * LC3 + LC4 \\ LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 \\ \end{array}$	1.35 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60	LC4 LC2 LC2 LC2 LC2 LC2 LC2 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC4 LC4 LC4 LC2 LC3 LC4	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00 1.00 1.00	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC5 LC6 LC5 LC6 LC6 LC4 LC4 LC4	0.70 0.70 0.70 0.70 0.70 0.70 0.70	LC5 LC6 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO49 CO50 CO51 CO51 CO52	$\begin{array}{c} 1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 \\ \\ LC1 \\ LC1 + LC2 \\ LC1 + LC3 \\ LC1 + LC3 \\ LC1 + LC2 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 \\ LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 \\ LC1 + LC2 + 0.70 * LC5 \\ LC1 + LC2 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC3 + 0.70 * LC6 \\ LC1 + LC4 \\ LC1 + 0.60 * LC2 + LC4 \\ LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 \\ LC1 + 0.6$	1.35 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60 0.60	LC4 LC2 LC3 LC2 LC3 LC2 LC2 LC2 LC3 LC3 LC2 LC3 LC3 LC3 LC3 LC3 LC4 LC2 LC2 LC2 LC2 LC2	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00 1.00 1.00 1.00	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC5 LC6 LC6 LC6 LC6 LC4 LC4 LC4 LC4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	LC5 LC6 LC6 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO47 CO48 CO49 CO50 CO51 CO51 CO52 CO53	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC5 LC1 + LC2 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC4 LC1 + 0.60 * LC2 + LC4 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5	1.35 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60	LC4 LC2 LC2 LC2 LC2 LC2 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC4 LC3 LC4 LC3 LC4 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00 1.00 1.00 1.00 1.00	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC5 LC6 LC5 LC6 LC5 LC6 LC5 LC6 LC4 LC4 LC4 LC4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	LC5 LC5 LC6 LC5 LC6 LC5 LC6 LC5 LC5 LC5
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO44 CO45 CO44 CO45 CO44 CO45 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO49 CO50 CO51 CO51 CO52 CO53 CO54	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC5 LC1 + LC2 + 0.70 * LC5 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC4 LC1 + 0.60 * LC2 + LC4 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5	1.35 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60	LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC2 LC3 LC3 LC3 LC3 LC3 LC4 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00 1.00 1.00 1.00 1.00 1.00	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC5 LC6 LC6 LC6 LC6 LC4 LC4 LC4 LC4 LC4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	LC5 LC6 LC6 LC6 LC6 LC6 LC5 LC6 LC5 LC6 LC5
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO47 CO48 CO49 CO50 CO51 CO51 CO52 CO53 CO54 CO55	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC5 LC1 + LC2 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC4 LC1 + 0.60 * LC2 + LC4 LC1 + 0.60 * LC2 + LC4 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5	1.35 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.50	LC2 LC2 LC2 LC2 LC2 LC2 LC2 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC4 LC2 LC3 LC4 LC2 LC3 LC4 LC2 LC3 LC2 LC3 LC4 LC2 LC3 LC4 LC2 LC3 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.70	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC5 LC6 LC5 LC6 LC5 LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	LC5 LC6 LC6 LC5 LC6 LC5 LC6 LC5 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO41 CO42 CO43 CO44 CO45 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO47 CO48 CO49 CO50 CO51 CO51 CO52 CO53 CO54 CO55 CO56	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC5 LC1 + LC2 + 0.70 * LC5 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC4 LC1 + 0.60 * LC2 + LC4 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + LC4 + 0.70 * LC5 LC1 + LC4 + 0.70 * LC5	1.35 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 1.00 0.60 0.50	LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC3 LC3 LC4 LC2 LC3 LC3 LC2 LC3 LC3 LC4 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC2 LC3 LC3 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00 1.00 1.00 1.00 1.00 0.70 0.70	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC6 LC6 LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	LC5 LC6 LC6 LC6 LC6 LC6 LC5 LC6 LC5 LC6 LC5 LC6
SLS	CO34 CO35 CO36 CO37 CO38 CO39 CO40 CO41 CO42 CO42 CO43 CO44 CO45 CO44 CO45 CO46 CO47 CO48 CO47 CO48 CO49 CO50 CO51 CO51 CO51 CO52 CO53 CO54 CO55 CO56 CO57	1.35 * LC1 + 0.75 * LC4 + 1.50 * LC6 LC1 LC1 + LC2 LC1 + LC3 LC1 + LC3 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC5 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC3 + 0.50 * LC4 + 0.70 * LC6 LC1 + LC2 + 0.70 * LC5 LC1 + LC2 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC3 + 0.70 * LC6 LC1 + LC4 LC1 + 0.60 * LC2 + LC4 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC2 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + 0.60 * LC3 + LC4 + 0.70 * LC5 LC1 + LC4 + 0.70 * LC5 LC1 + LC4 + 0.70 * LC5 LC1 + LC4 + 0.70 * LC5 LC1 + LC4 + 0.70 * LC6 LC1 + LC4 + 0.70 * LC6 LC1 + LC4 + 0.70 * LC6 LC1 + LC4 + 0.70 * LC6	1.35 1.00	LC1 LC1 LC1 LC1 LC1 LC1 LC1 LC1	0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.60 1.00 0.60 0.60 0.60 0.60 1.00 1.00 1.00 0.60 0.60 0.60 1.00 1.00 0.60 0.00	LC4 LC2 LC2 LC3 LC2 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC3 LC4 LC3 LC4 LC2 LC3 LC4 LC3 LC4 LC2 LC3 LC4 LC2 LC3 LC4 LC2 LC3 LC4 LC2 LC3 LC4 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC2 LC3 LC3 LC3 LC2 LC3 LC2 LC3 LC2 LC3 LC3 LC2 LC3 LC3 LC2 LC3 LC3 LC3 LC3 LC3 LC3 LC3 LC3	1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70 0.70 0.70 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.70	LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC5 LC5 LC6 LC5 LC6 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4 LC4	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	LC5 LC6 LC6 LC5 LC6 LC5 LC6 LC5 LC6 LC5 LC6

CO58	LC1 + LC6	1.00	LC1	1.00	LC6				
CO59	LC1 + 0.60 * LC2 + LC5	1.00	LC1	0.60	LC2	1.00	LC5		
CO60	LC1 + 0.60 * LC2 + LC6	1.00	LC1	0.60	LC2	1.00	LC6		
CO61	LC1 + 0.60 * LC3 + LC5	1.00	LC1	0.60	LC3	1.00	LC5		
CO62	LC1 + 0.60 * LC3 + LC6	1.00	LC1	0.60	LC3	1.00	LC6		
CO63	LC1 + 0.60 * LC2 + 0.50 * LC4 + LC5	1.00	LC1	0.60	LC2	0.50	LC4	1.00	LC5
CO64	LC1 + 0.60 * LC2 + 0.50 * LC4 + LC6	1.00	LC1	0.60	LC2	0.50	LC4	1.00	LC6
CO65	LC1 + 0.60 * LC3 + 0.50 * LC4 + LC5	1.00	LC1	0.60	LC3	0.50	LC4	1.00	LC5
CO66	LC1 + 0.60 * LC3 + 0.50 * LC4 + LC6	1.00	LC1	0.60	LC3	0.50	LC4	1.00	LC6
CO67	LC1 + 0.50 * LC4 + LC5	1.00	LC1	0.50	LC4	1.00	LC5		
CO68	LC1 + 0.50 * LC4 + LC6	1.00	LC1	0.50	LC4	1.00	LC6		

3. Results of structural calculation

3.1 Deformation of FEA model

3.1.1 Deflection in mullions from SLS combinations. Maximum deformation u=4.7 mm.

Fig. 3.1.1 Deflection in mullions from SLS combinations (extract from RFEM 6.02)

3.1.2 Deflection in transoms from SLS combinations. Maximum deformation u=1.9 mm. Displacements [u] [mm]

Fig. 3.1.2 Deflection in transoms from SLS combinations (extract from RFEM 6.02)

3.1.3 Deflection in transoms from self weight (load case LC1, load combination CO35). Maximum deformation u=1.8 mm.

Fig. 3.1.3 Deflection in transoms from self weight (load case LC1, load combination CO35) (extract from RFEM 6.02)

3.2 Internal forces

Internal forces for profiles are calculated in RFEM 6.02.

Fig. 3.2.1 Internal forces (M_y, ULS combinations) (extract from RFEM 6.02)

3.3 Support reactions

3.3.1 Support reactions P_z . Maximum value P_z=7.89 kN (load combinations CO14 - CO22). Global Reaction Forces P_Z [kN]

Fig. 3.3.1 Support reactions P_z (load combinations CO14) (extract from RFEM 6.02)

3.3.2 Support reactions "+" P_y. Maximum value P_y= 10,64 kN (load combinations CO6). Global Reaction Forces P_Y [kN]

Fig. 3.3.2 Support reactions "+" P_{y} (load combination CO6) (extract from RFEM 6.02)

3.3.3 Support reactions "-" P_y. Maximum value P_y= - 8.16 kN (load combination CO9). Global Reaction Forces P_Y [kN]

3.4 Serviceability limit state (SLS) design

3.5.1 Deformation limit for mullion is L/200=2200/200=11 mm or 15 mm according to EN 13830. Maximum deflection of mullion from applied loads (SLS combinations) is 4.7 mm (fig. 3.1.1), that less than limit value 11 mm.

3.5.2 Frontal deformation limit for transom from wind load is L/200=1129/200=5,6 mm or 12 mm according to EN 13830.

Maximum deflection of transom from applied loads (SLS combinations) is 1.9 mm (fig. 3.1.2), that less than limit value 6.5 mm.

3.5.3 Maximum deformation limit for transom from dead load (self weight) is L/500=1304/500=2.6 mm or 3 mm according to EN 13830.

Maximum deflection of transom from applied loads (SLS combinations) is 1.8 mm (fig. 3.1.3), that less than limit value 2.6 or 3 mm.

In order to compensate surplus transom deflection special glass support elements should be applied (see fig. 3.5.1).

Fig. 3.5.1 Glass support element

3.5.4 All calculated SLS design ratios are less then 1.

Deflections from existing loads is less then maximum deflections according to EN 13830. The entire structure has been designed properly and safety.

4. Bracket calculations

Fig. 4.1 Brackets location

4.1 Bracket type KR-1

4.1.1 Steel calculation

Bracket KR-1 location (the most loaded bracket) is shown in the fig. 4.1.1.

Fig. 4.1.1 Bracket KR-1 location

Bracket KR-1 scheme is shown in the fig. 4.1.2.

Fig. 4.1.2 Bracket KR-1 scheme

Bracket KR-1 FEA model is shown in the fig. 4.1.3.

Colors of Rendered Objects

Node | Display Properties Line | Display Properties Member | Type | Member Hinge Surface | Thickness 1 - Uniform | d : 10.0 mm | 2 - S355

Fig. 4.1.3 Bracket KR-1 FEA model (extract from RFEM 6.02)

FEA model of bracket KR-1 with applied loads is shown in the fig. 4.1.4.

The most unfavourable load combinations for bracket KR-1:

- CO6 with support reactions P_z=6,35 kN, P_y=9,3 kN;
- CO9 with support reactions $P_z{=}6{,}35$ kN, $P_y{=}$ 5,63 kN;
- CO14 with support reactions P_z =6,76 kN, P_y =0,16 kN.

Fig. 4.1.4 Loads to bracket KR-1 - CO9 load combination (extract from RFEM 6.02)

Result of stress-strain analysis of bracket KR-1 (existing stresses) is shown in the fig. 4.1.5.

ULS design of bracket KR-1 is performed it the table 4.1.1.

Thick.	Design	Loading	Stress	Stress [N	N/mm²]	Stress
No.	Situation	No.	Туре	Existing	Limit	Ratio η []
1	DS1	CO9	σ _{1,+}	124.266	355.000	0.350
1	DS1	CO9	σ _{2,+}	54.007	355.000	0.152
1	DS1	CO9	σ _{1,-}	-72.056	355.000	0.203
1	DS1	CO9	σ _{2,-}	-121.135	355.000	0.341
1	DS1	CO9	σ _{1,m}	22.267	355.000	0.063
1	DS1	CO9	σ _{2,m}	-25.235	355.000	0.071
1	DS1	CO9	τ _{max}	26.980	204.959	0.132
1	DS1	CO9	σ _{eqv,max,von} Mises	111.254	355.000	0.313

Table 4.1.1 Bracket KR-1 calculation (extract from RFEM 6.02)

All calculated ULS design ratios are less then 1. The bracket KR-1 has been designed properly and safety.

4.1.2 Weld seam calculation

Weld seam calculation is performed according to simplified method (par. 4.5.3.3 EN 1993-1-

8).

Weld seam parameters are shown in the fig. 4.1.6. Weld size $a_1=8$ mm.

No.	Name		Assigned to Line No. and Surfaces No.			
1	Tee Joint Single Bevel Continuou	s a1 : 8.0 mm L1 : 300.0 mm	83/5,14,16; 84/6,15,16	×,		
Main St	tress-Strain Analysis - Configuration					
Categories Joint type Tee Jo Weld type Single Longitudina Contin	s int Bevel al arrangement uous	Parameters Weld size a1 a2 ▷ mm] a2 ▷ (mm) Weld length L1 300.0 ▷ (mm) Pitch (center to center of weld) L2 ▷ Position of first weld at line L3	Joint Type 'Tee Joint' Weld Type 'Single Bevel'			
Options	onal Parameters		Longitudinal Arrangement 'Continuous'			

Fig. 4.1.6 Weld seam parameters (extract from RFEM 6.02)

Existing stresses in the weld seam are shown in the fig. 4.1.7.

Fig. 4.1.7 Existing stresses in the weld seam (extract from RFEM 6.02)

Calculation of weld seam is performed it the table 4.1.2.

Table 4.1.2 Weld seam calculation (extract from RFEM 6.02)

Design	Loading	Stress	Stress [N	N/mm²]	Stress	Note
Situation	No.	Туре	Existing	Limit	Ratio η []	Note
DS1	CO9	f _{normal}	13.045			
DS1	CO9	$f_{bending}$	42.992			
DS1	CO9	f _{s,shear}	-1.123			
DS1	CO9	f _{w,shear}	-2.678			
DS1	CO9	σ _{w,Ed}	56.101	251.500	0.223	β _w =0.9 for S355 steel

4.1.3 Bolt calculation (mullion to bracket)

Bolt fixing mullion to bracket has to be calculated (see fig. 4.1.8). Designed bolt is M16 DIN 931. Bolt class is 8.8.

Bolt to calculate

Fig. 4.1.8 Bolt to calculate for bracket KR-1

Bolt calculation according to BS EN 1993-1-8 (table 3.4) from support reaction forces (P_z =6,35 kN, P_y =9,3 kN, load combination CO6) is performed it the table 4.1.3.

Tension forces in bolt due to their negligible values are neglected.

		Bolt N	A12 calculation bracket KR-1					
Bolt size	M12							
Bolt class	8.8							
f _{yb}	640	MPa	Yield strength					
f ub	800	MPa	Ultimate tensile strength					
Shear resistance per shear plane calculation								
			The design shear force per bolt for the ultimate limit					
F _{v,Ed}	5.63	kN	state					
F _{v,Rd}	31.87	kN	The shear resistance per bolt					
F _{v,Ed} /F _{v,Rd}	0.18		Criteria F $v_{,Ed} \leq F v_{,Rd}$ is performed					
α_{V}	0.6		Factor for bolt class 8.8					
As	83.0	mm²	Stress area (threaded part)					
γ м2	1.25		Safety factor - EN 1993-1-18					
		Веа	ring resistance calculation					
			The design shear force per bolt for the ultimate limit					
F _{v,Ed}	11.26	kN	state					
F b,Rd	22.53	kN	The design bearing resistance per bolt					
F v,Ed/F b,Rd	0.50	kN	Criteria F _{v,Ed} ≤ F _{b,Rd} is performed					
Material			Aluminium EN 6060 (ET,EP,ER/B) T6					
fu	170	MPa						
d	16	mm	Diametr of aluminium pipe					
t	4.40	mm	Total thickness of crumpled webs (mullion)					
k ₁	2.50							
α_{b}	0.94							

Table 4.1.3 Bolt M12 for bracket KR-1 calculation (vertical component of support reaction)

4.1.4 Blind bolt calculation (bracket to steel frame)

Bolt fixing bracket to steel beam has to be calculated (see fig. 4.1.9). Designed bolt is M12 blind bolt (certificated product).

Fig. 4.1.9 Bolt to calculate

Support reactions from existing loads are shown in the fig. 4.1.10.

Fig. 4.1.10 Support reactions from bracket KR-1 (extract from RFEM 6.02)

Designed forces in bolt are less then bolt resistance guaranteed by manufacturer (see fig. 4.1.11).

High Tensile Hot Dip Galvanised Blind Bolt – Design to BS EN 1993–1–8										
Diameter	Tension Resistance F _{t, Rd} (kN)	Shear Resistance Over Thread F _{v,Rd} thread (kN)	Shear Resistance Over Slot F _{v,Rd} slot (kN)	Bearing R in 10m S275 F _{b,Rd} (kN)	esistance m Plate S355 <i>F</i> _{b,Rd} (kN)	Recommended Tightening Torque (Nm)				
M8	9.8	14.6	9.1	65.6	75.2	15				
M10	14.1	23.2	19.0	82.0	94.0	24				
M12	22.4	33.7	26.4	98.4	112.8	30				
M14	34.8	46.7	29.0	114.8	131.6	34				
M16	38.8	62.7	49.1	131.2	150.4	50				
M20	71.4	97.9	76.1	164.0	188.0	65				
M24	116.7	141.0	105.4	196.8	225.6	75				
M30	174.5	224.0	164.6	246.0	282.0	85				

Fig. 4.1.11 Bolt resistance (extract from blind bolt catalogue)

Blind bolt M12 can be applied.

4.2.1 Steel calculation

Bracket KR-2 location (the most loaded bracket) is shown in the fig. 4.2.1 (see "Curtain wall structural calculation report. 23-08 Elevation B").

Bracket KR-2 scheme is shown in the fig. 4.2.2.

Fig. 4.2.2 Bracket KR-2 scheme

Fig. 4.2.3 Bracket KR-2 FEA model (extract from RFEM 6.02)

FEA model of bracket KR-2 with applied loads is shown in the fig. 4.2.4.

The most unfavourable load combination for bracket KR-2 is CO6 with support reaction $P_y=10,75$ kN and CO9 with support reaction $P_y=-8.95$ kN (see fig. 3.3.2, 3.3.3 "Curtain wall structural calculation report. 23-08 Elevation B").

Fig. 4.2.4 Loads to bracket KR-2 - CO6 load combination (extract from RFEM 6.02)

Result of stress-strain analysis of bracket KR-2 (existing stresses) is shown in the fig. 4.2.5.

max $\sigma_{eqv,max,von\ Mises}$: 57.289 | min $\sigma_{eqv,max,von\ Mises}$: 0.183 N/mm²

ULS design of bracket KR-2 is performed it the table 4.2.1.

Thick.	Design	Loading	Stress	Stress [N/mm ²]		Stress
No.	Situation	No.	Туре	Existing	Limit	Ratio η []
1	DS1	CO6	σ _{1,+}	18.226	355.000	0.051
1	DS1	CO6	σ _{2,+}	-18.219	355.000	0.051
1	DS1	CO6	σ _{1,-}	18.343	355.000	0.052
1	DS1	CO6	σ _{2,-}	-60.873	355.000	0.171
1	DS1	CO6	σ _{1,m}	6.351	355.000	0.018
1	DS1	CO6	σ _{2,m}	-29.068	355.000	0.082
1	DS1	CO6	τ _{max}	6.459	204.959	0.032
1	DS1	CO6	$\sigma_{eqv,max,von}$ Mises	57.289	355.000	0.161

Table 4.2.1 Bracket KR-2 calculation (extract from RFEM 6.02)

All calculated ULS design ratios are less then 1. The bracket KR-2 has been designed properly and safety.

4.2.2 Weld seam calculation

Weld seam calculation is performed according to simplified method (par. 4.5.3.3 EN 1993-1-

8).

Weld seam parameters are shown in the fig. 4.1.6. Weld size $a_1=8$ mm.

Existing stresses in the weld seam are shown in the fig. 4.2.6.

Fig. 4.2.6 Existing stresses in the weld seam (extract from RFEM 6.02)

Calculation of weld seam is performed it the table 4.2.2.

Design	Loading	Stress	Stress [N	N/mm²]	Stress	Note	
Situation	No.	Туре	Existing	Limit	Ratio η []	Note	
DS1	CO6	f _{normal}	3.737				
DS1	CO6	f _{bending}	17.765				
DS1	CO6	f _{s,shear}	-0.159				
DS1	CO6	f _{w,shear}	-0.015				
DS1	CO6	$\sigma_{w,Ed}$	21.502	251.500	0.085	β _w =0.9 for S355 steel	

Table 4.2.2 Weld seam calculation (extract from RFEM 6.02)

4.2.3 Bolt calculation (mullion to bracket)

Bolt fixing mullion to bracket has to be calculated (see fig. 4.2.7). Designed bolt is M12 DIN 931. Bolt class is 8.8.

Fig. 4.2.7 Bolt to calculate for bracket KR-2

Bolt calculation according to BS EN 1993-1-8 (table 3.4) from support reaction forces (P_y =10,37 kN, load combination CO2) is performed it the table 4.2.3.

Tension forces in bolt due to their negligible values are neglected.

		Bolt N	112 calculation bracket KR-2					
Bolt size	M12							
Bolt class	8.8							
f _{yb}	640	MPa	Yield strength					
f _{ub}	800	MPa	Ultimate tensile strength					
Shear resistance per shear plane calculation								
			The design shear force per bolt for the ultimate limit					
F _{v,Ed}	5.50	kN	state					
F _{v,Rd}	31.87	kN	The shear resistance per bolt					
F _{v,Ed} /F _{v,Rd}	0.17		Criteria F $v_{,Ed} \le F v_{,Rd}$ is performed					
α_{V}	0.6		Factor for bolt class 8.8					
As	83.0	mm²	Stress area (threaded part)					
γ м2	1.25		Safety factor - BS EN 1993-1-18					
		Веа	ring resistance calculation					
			The design shear force per bolt for the ultimate limit					
F v,Ed	11.00	kN	state					
F _{b,Rd}	22.53	kN	The design bearing resistance per bolt					
F _{v,Ed} /F _{b,Rd}	0.49		Criteria F $_{v,Ed} \le F_{b,Rd}$ is performed					
Material			Aluminium EN 6060 (ET,EP,ER/B) T6					
f _u	170	MPa						
d	16	mm	Diametr of aluminium pipe					
t	4.40	mm	Total thickness of crumpled webs (mullion)					
k ₁	2.50							
α_{b}	0.94							

Table 4.2.3 Bolt M12 for bracket KR-2 calculation

4.2.4 Blind bolt calculation (bracket to steel frame)

Bolt fixing bracket to steel beam has to be calculated (see fig. 4.2.8). Designed bolt is M12 blind bolt (certificated product).

Fig. 4.2.8 Bolt to calculate Support reactions from existing loads are shown in the fig. 4.2.9. Global Reaction Forces P_X [kN]

Fig. 4.2.9 Support reactions from bracket KR-2 (extract from RFEM 6.02)

Designed forces in bolt are less then bolt resistance (see fig. 4.1.11). Blind bolt M12 can be applied.

4.3 Bracket type KR-3

4.3.1 Steel calculation

Bracket KR-3 location (the most loaded bracket) is shown in the fig. 4.3.1 (see "Curtain wall structural calculation report. 23-08 Elevation B").

Fig. 4.3.1 Bracket KR-3 location

Bracket KR-3 scheme is shown in the fig. 4.3.2.

Fig. 4.3.2 Bracket KR-3 scheme

Bracket KR-3 FEA model is shown in the fig. 4.3.3.

Fig. 4.3.3 Bracket KR-3 FEA model (extract from RFEM 6.02)

FEA model of bracket KR-3 with applied loads is shown in the fig. 4.3.4.

The most unfavourable load combination for bracket KR-3 is CO6 with support reaction $P_y=7,55$ kN and CO9 with support reaction $P_y= -4.77$ kN (see fig. 3.3.2, 3.3.3 "Curtain wall structural calculation report. 23-08 Elevation B").

Fig. 4.3.4 Loads to bracket KR-3 - CO6 load combination (extract from RFEM 6.02)

Result of stress-strain analysis of bracket KR-3 (existing stresses) is shown in the fig. 4.3.5.

max $\sigma_{eqv,max,von Mises}$: 39.064 | min $\sigma_{eqv,max,von Mises}$: 0.111 N/mm²

ULS design of bracket KR-3 is performed it the table 4.3.1.

Thick.	Design	Loading	Stress	Stress [N/mm ²]		Stress
No.	Situation	No.	Туре	Existing	Limit	Ratio η []
1	DS1	CO6	σ _{1,+}	10.976	355.000	0.031
1	DS1	CO6	σ _{2,+}	-12.290	355.000	0.035
1	DS1	CO6	σ _{1,-}	12.374	355.000	0.035
1	DS1	CO6	σ _{2,-}	-40.880	355.000	0.115
1	DS1	CO6	σ _{1,m}	4.326	355.000	0.012
1	DS1	CO6	σ _{2,m}	-20.069	355.000	0.057
1	DS1	CO6	τ _{max}	4.000	204.959	0.020
1	DS1	CO6	σ _{eqv,max} ,von Mises	39.064	355.000	0.110

Table 4.3.1 Bracket KR-3 calculation (extract from RFEM 6.02)

All calculated ULS design ratios are less then 1. The bracket KR-3 has been designed properly and safety.

4.3.2 Weld seam calculation

Weld seam calculation is performed according to simplified method (par. 4.5.3.3 EN 1993-1-

8).

Weld seam parameters are shown in the fig. 4.1.6. Weld size $a_1=8$ mm. Existing stresses in the weld seam are shown in the fig. 4.3.6.

Fig. 4.3.6 Existing stresses in the weld seam (extract from RFEM 6.02)

Calculation of weld seam is performed it the table 4.3.2.

Design	Loading	Stress	Stress [N	N/mm²]	Stress	Note
Situation	No.	Туре	Existing	Limit	Ratio η []	Note
DS1	CO6	f _{normal}	1.926			
DS1	CO6	$f_{bending}$	4.926			
DS1	CO6	f _{s,shear}	-0.096			
DS1	CO6	f _{w,shear}	-0.028			
DS1	CO6	$\sigma_{w,Ed}$	6.851	251.500	0.027	β _w =0.9 for S355 steel

Table 4.3.2 Weld seam calculation (extract from RFEM 6.02)

4.3.4 Bolt calculation (mullion to bracket)

Bolt fixing mullion to bracket has to be calculated (see fig. 4.3.7). Designed bolt is M12 DIN 931. Bolt class is 8.8.

Fig. 4.3.7 Bolt to calculate for bracket KR-3

Bolt calculation according to BS EN 1993-1-8 (table 3.4) from support reaction forces ($P_y=7 \text{ kN}$, load combination CO2) is performed it the table 4.233.

Tension forces in bolt due to their negligible values are neglected.

	Bolt M12 calculation bracket KR-3				
Bolt size	M12				
Bolt class	8.8				
f _{yb}	640	MPa	Yield strength		
f _{ub}	800	MPa	Ultimate tensile strength		
	Sh	near resi	stance per shear plane calculation		
	_		The design shear force per bolt for the ultimate limit		
F _{v,Ed}	3.78	kN	state		
F _{v,Rd}	31.87	kN	The shear resistance per bolt		
F v,Ed/F v,Rd	0.12		Criteria F $v_{,Ed} \leq F v_{,Rd}$ is performed		
αv	0.6		Factor for bolt class 8.8		
As	83.0	mm²	Stress area (threaded part)		
γ м2	1.25		Safety factor - BS EN 1993-1-18		
		Bea	aring resistance calculation		
			The design shear force per bolt for the ultimate limit		
F _{v,Ed}	7.55	kN	state		
F _{b,Rd}	53.25	kN	The design bearing resistance per bolt		
F _{v,Ed} /F _{b,Rd}	0.14		Criteria F _{v,Ed} ≤ F _{b,Rd} is performed		
Material			Aluminium EN 6060 (ET,EP,ER/B) T6		
fu	170	MPa			
d	16	mm	Diametr of aluminium pipe		
			Total thickness of crumpled webs (mullion and		
t	10.40	mm	reinforcment)		
k ₁	2.50				
α _b	0.94				

Table 4.3.3 Bolt M12 for bracket KR-3 calculation

4.3.5 Blind bolt calculation (bracket to steel frame)

Bolt fixing bracket to steel beam has to be calculated (see fig. 4.3.8). Designed bolt is M12 blind bolt (certificated product).

Fig. 4.3.8 Bolt to calculate

Support reactions from existing loads are shown in the fig. 4.3.9.

Global Reaction Forces P_X [kN]

Fig. 4.3.9 Support reactions from bracket KR-3 (extract from RFEM 6.02)

Designed forces in bolt are less then bolt resistance (see fig. 4.1.11). Blind bolt M12 can be applied.

4.4 Bracket type KR-4

4.4.1 Steel calculation

Bracket KR-4 location is shown in the fig. 4.4.1 (see "Curtain wall structural calculation report. 23-08 Elevation B").

Fig. 4.4.1 Bracket KR-4 location

Bracket KR-4 scheme is shown in the fig. 4.4.2.

Fig. 4.4.2 Bracket KR-4 scheme

Bracket KR-4 FEA model is shown in the fig. 4.4.3.

Fig. 4.4.3 Bracket KR-4 FEA model (extract from RFEM 6.02)

FEA model of bracket KR-4 with applied loads is shown in the fig. 4.4.4.

The most unfavourable load combinations for bracket KR-4 is CO6 with support reaction $P_y=5,05$ kN and CO9 with support reaction $P_y=-3,31$ kN (see fig. 3.3.2, 3.3.3 "Curtain wall structural calculation report. 23-08 Elevation B").

Fig. 4.4.4 Loads to bracket KR-4 - CO6 load combination (extract from RFEM 6.02)

Result of stress-strain analysis of bracket KR-4 (existing stresses) is shown in the fig. 4.4.5.

max σ_{eqv,max,von Mises}: 126.208 | min σ_{eqv,max,von Mises}: 0.973 N/mm²
Fig. 4.4.5 Stresses in bracket KR-4 (extract from RFEM 6.02)

ULS design of bracket KR-4 is performed it the table 4.4.1.

Thick.	Design	Loading	Loading Stress		N/mm²]	Stress
No.	Situation	No.	Туре	Existing	Limit	Ratio η []
1	DS1	CO6	σ _{1,+}	97.744	355.000	0.275
1	DS1	CO6	σ _{2,+}	-85.783	355.000	0.242
1	DS1	CO6	σ _{1,-}	85.968	355.000	0.242
1	DS1	CO6	σ _{2,-}	-149.893	355.000	0.422
1	DS1	CO6	σ _{1,m}	38.934	355.000	0.110
1	DS1	CO6	σ _{2,m}	-66.325	355.000	0.187
1	DS1	CO6	τ _{max}	24.660	204.959	0.120
1	DS1	CO6	$\sigma_{eqv,max,von Mises}$	137.736	355.000	0.388

Table 4.4.1 Bracket KR-4 calculation (extract from RFEM 6.02)

All calculated ULS design ratios are less then 1. The bracket KR-4 has been designed properly and safety.

4.4.2 Weld seam calculation

Weld seam calculation is performed according to simplified method (par. 4.5.3.3 EN 1993-1-

8).

Weld seam parameters are shown in the fig. 4.4.6. Weld size $a_1=6$ mm. Existing stresses in the weld seam are shown in the fig. 4.4.7.

Main Stress-Strain Analysis - Configuration		
Main Stress-Stran Analysis - Configuration Categories Joint type Tee Joint Weld type Double Fillet Longitudinal arrangement Continuous	Parameters Weld size a1 6.0 ∶ ▶ [mm] a2 ○ ▶ [mm] Weld length L1 500.0 ∶ ▶ [mm] Pitch (center to center of weld) L2 ▷ [mm] Position of first weld at line	Joint Type 'Tee Joint' Weld Type 'Double Fillet'
Options Additional Parameters	L3 [mm]	Longitudinal Arrangement 'Continuous'

Fig. 4.4.6 Weld seam parameters (extract from RFEM 6.02)

Fig. 4.4.7 Existing stresses in the weld seam (extract from RFEM 6.02)

Calculation of weld seam is performed it the table 4.4.2.

Table 4.4.2 Weld seam calculation (extract from RFEM 6.02)

Design	Loading	Stress	Stress [N	N/mm²]	Stress	Note
Situation	No.	Туре	Existing	Limit	Ratio η []	Note
DS1	CO6	f _{normal}	-23.320			
DS1	CO9	f _{bending}	7.191			
DS1	CO9	f _{s,shear}	3.182			
DS1	CO9	f w,shear	24.139			
DS1	CO9	$\sigma_{w,Ed}$	33.953	251.500	0.135	β _w =0.9 for S355 steel

4.4.3 Bolt calculation (mullion to bracket)

Bolt fixing mullion to bracket has to be calculated (see fig. 4.4.8). Designed bolt is M12 DIN 931. Bolt class is 8.8.

Fig. 4.4.8 Bolt to calculate

Calculation of the bolt according to the EN 1993-1-8 (table 3.4) is performed it the table 4.4.3.

Table 4.4.3 Bolt M12 for bracket KR-4 calculation

Bolt M12 calculation bracket KR-4				
M12				
8.8				
640	MPa	Yield strength		
800	MPa	Ultimate tensile strength		
Shear resistance per shear plane calculation				
		The design shear force per bolt for the ultimate limit		
5.05	kN	state		
31.87	kN	The shear resistance per bolt		
0.16		Criteria F _{v,Ed} ≤ F _{v,Rd} is performed		
0.6		Factor for bolt class 8.8		
83.0	mm²	Stress area (threaded part)		
1.25		Safety factor - EN 1993-1-18		
	M12 8.8 640 800 St 5.05 31.87 0.16 0.6 83.0 1.25	Bolt N M12 8.8 640 MPa 800 MPa Shear resist 5.05 kN 31.87 kN 0.16 0.6 83.0 mm² 1.25		

Bearing resistance calculation					
			The design shear force per bolt for the ultimate limit		
F _{v,Ed}	5.05	kN	state		
F _{b,Rd}	22.53	kN	The design bearing resistance per bolt		
F v,Ed/F b,Rd	0.22		Criteria F $v_{,Ed} \leq F_{b,Rd}$ is performed		
Material			Aluminium EN 6060 (ET,EP,ER/B) T6		
f _u	170	MPa			
d	16	mm	Diametr of aluminium pipe		
t	4.40	mm	Total thickness of crumpled webs (mullion)		
k ₁	2.50				
α _b	0.94				

4.4.4 Blind bolt calculation (bracket to steel frame)

Bolt fixing bracket to steel beam has to be calculated (see fig. 4.4.9). Designed bolt is M12 blind bolt (certificated product).

Fig. 4.4.9 Bolt to calculate

Support reactions from existing loads are shown in the fig. 4.4.10.

Fig. 4.4.10 Support reactions from bracket KR-4 (extract from RFEM 6.02)

Designed forces in bolt are less then bolt resistance (see fig. 4.1.11).

Blind bolt M12 can be applied. 4.5 Bracket type KR-5

Bracket KR-5 location (the most loaded bracket) is shown in the fig. 4.5.1 (see "Curtain wall structural calculation report. 23-08 Elevation B").

Fig. 4.5.1 Bracket KR-5 location

Bracket KR-5 FEA model with applied loads is shown in the fig. 4.5.4.

Fig. 4.5.4 Bracket KR-5 FEA model (extract from RFEM 6.02)

Result of stress-strain analysis of bracket KR-5 (existing stresses) is shown in the fig. 4.5.5.

Fig. 4.5.5 Stresses in bracket KR-5 (extract from RFEM 6.02)

Bolt fixing mullion to bracket has to be calculated (see fig. 4.5.3). Designed bolt is M12 DIN 931. Bolt class is 8.8.

Bolt calculation according to BS EN 1993-1-8 (table 3.4) from support reaction forces (P_z =9,37 kN, P_y =4,08 kN load combination CO8, see fig. 3.3.2, 3.3.3 "Curtain wall structural calculation report. 23-08 Elevation B") is performed it the table 4.5.1.

Tension forces in bolt due to their negligible values are neglected.

Bolt M12 calculation bracket KR-5					
Bolt size	M12				
Bolt class	8.8				
f _{yb}	640	MPa	Yield strength		
f ub	800	MPa	Ultimate tensile strength		
		Shear res	sistance per shear plane calculation		
F _{v,Ed}	10.22	kN	The design shear force per bolt for the ultimate limit state		
F _{v,Rd}	31.87	kN	The shear resistance per bolt		
F _{v,Ed} /F _{v,Rd}	0.32		Criteria F $_{v,Ed} \leq$ F $_{v,Rd}$ is performed		
αv	0.6		Factor for bolt class 8.8		
As	83.0	mm ²	Stress area (threaded part)		
ү м2	1.25		Safety factor - EN 1993-1-18		
		B	earing resistance calculation		
F _{v,Ed}	8.73	kN	The design shear force per bolt for the ultimate limit state		
F _{b,Rd}	20.48	kN	The design bearing resistance per bolt		
F v,Ed/F b,Rd	0.43		Criteria F $_{v,Ed} \leq F_{b,Rd}$ is performed		
Material			Aluminium EN 6060 (ET,EP,ER/B) T6		
fu	170	MPa			
d	16	mm	Diameter of aluminium pipe		
t	4.00	mm	Total thickness of crumpled webs		
k ₁	2.50				
$\alpha_{\rm b}$	0.94				

4.6 Bracket type KR-6

Bracket KR-6 location (the most loaded bracket) see the fig. 4.1. Bracket KR-6 scheme is shown in the fig. 4.6.1.

Fig. 4.6.1 Bracket KR-5 scheme

Fig. 4.6.2 Bolt to calculate

Bracket KR-6 FEA model with applied loads is shown in the fig. 4.6.3.

Fig. 4.6.3 Bracket KR-6 FEA model (extract from RFEM 6.02)

Result of stress-strain analysis of bracket KR-5 (existing stresses) is shown in the fig. 4.5.5.

Fig. 4.5.5 Stresses in bracket KR-5 (extract from RFEM 6.02)

Bolt fixing mullion to bracket has to be calculated (see fig. 4.6.2). Designed bolt is M12 DIN 931. Bolt class is 8.8.

Bolt calculation according to BS EN 1993-1-8 (table 3.4) from support reaction forces (P_z =7,89 kN, P_y =3,92 kN load combination CO8) is performed it the table 4.6.1.

Tension forces in bolt due to their negligible values are neglected.

Bolt M12 calculation bracket KR-6				
Bolt size	M12			
Bolt class	8.8			
f _{yb}	640	MPa	Yield strength	
f _{ub}	800	MPa	Ultimate tensile strength	
	Sh	near resist	tance per shear plane calculation	
			The design shear force per bolt for the ultimate limit	
F _{v,Ed}	8.82	kN	state	
F _{v,Rd}	31.87	kN	The shear resistance per bolt	
F v,Ed/F v,Rd	0.28		Criteria F $_{v,Ed} \leq$ F $_{v,Rd}$ is performed	
αv	0.6		Factor for bolt class 8.8	
As	83.0	mm²	Stress area (threaded part)	
ү м2	1.25		Safety factor - EN 1993-1-18	
		Bear	ring resistance calculation	
			The design shear force per bolt for the ultimate limit	
F _{v,Ed}	8.82	kN	state	
F _{b,Rd}	20.48	kN	The design bearing resistance per bolt	
F v,Ed/F b,Rd	0.43		Criteria F _{v,Ed} ≤ F _{b,Rd} is performed	
Material			Aluminium EN 6060 (ET,EP,ER/B) T6	
f _u	170	MPa		
d	16	mm	Diameter of bolt	
t	4.00	mm	Total thickness of crumpled plates	
k ₁	2.50			
α_{b}	0.94			

4.7 Bracket type KR-7

4.7.1 Steel calculation

Bracket KR-7 location (the most loaded bracket) is shown in the fig. 4.7.1.

Bracket KR-7 scheme is shown in the fig. 4.7.2.

Fig. 4.7.2 Bracket KR-7 scheme

Bracket KR-6 FEA model is shown in the fig. 4.7.3.

Visibility mode

Fig. 4.7.3 Bracket KR-7 FEA model (extract from RFEM 6.02)

FEA model of bracket KR-7 with applied loads is shown in the fig. 4.7.4.

The most unfavourable load combinations for bracket KR-7 are CO2 with support reactions P_y =4,34 kN.

Fig. 4.7.4 Loads to bracket KR-7 - CO6 load combination (extract from RFEM 6.02)

Result of stress-strain analysis of bracket KR-7 (existing stresses) is shown in the fig. 4.7.5.

max $\sigma_{eqv,max,von~Mises}$: 265.926 | min $\sigma_{eqv,max,von~Mises}$: 0.039 N/mm²

Fig. 4.7.5 Stresses in bracket KR-7 (extract from RFEM 6.02)

ULS design of bracket KR-7 is performed it the table 4.7.1.

Thick.	Design	Loading	Stress	Stress [N	N/mm²]	Stress
No.	Situation	No.	Туре	Existing	Limit	Ratio η []
	Thikness 1	L0 mm				
1	DS1	CO2	σ _{1,+}	276.393	355.000	0.779
1	DS1	CO2	σ _{2,+}	-214.850	355.000	0.605
1	DS1	CO2	σ _{1,-}	209.621	355.000	0.590
1	DS1	CO2	σ _{2,-}	-248.206	355.000	0.699
1	DS1	CO2	σ _{1,m}	50.717	355.000	0.143
1	DS1	CO2	σ _{2,m}	-155.160	355.000	0.437
1	DS1	CO2	τ _{max}	113.570	204.959	0.554
1	DS1	CO2	$\sigma_{eqv,max,von}$ Mises	265.926	355.000	0.749

Table 4.7.1 Bracket KR-7 calculation (extract from RFEM 6.02)

All calculated ULS design ratios are less then 1. The bracket KR-7 has been designed properly and safety.

4.7.2 Weld seam calculation

Weld seam calculation is performed according to directional method (par. 4.5.3.2 EN 1993-1-

8).

Weld seam parameters are shown in the fig. 4.7.6. Weld size $a_1=6$ mm.

No. Name		Assigned to Line No. and Surfaces No.
1 Tee Joint Double Fillet Continuo	us a1 : 6.0 mm L1 : 160.0 mm	280/53-55: 321/62 64 63
	L'an	
Main Stress-Strain Analysis - Configuration		
Categories Joint type Tee Joint Weld type Double Fillet Longitudinal arrangement Continuous	 Parameters Weld size a1 a2 (mm) Weld length L1 160.0 \$> (mm) Pitch (center to center of weld) L2 (mm) Position of first weld at line 	Joint Type 'Tee Joint' Weld Type 'Double Fillet'
Options		Longitudinal Arrangement 'Continuous'

Fig. 4.7.6 Weld seam parameters (extract from RFEM 6.02)

Existing stresses in the weld seam are shown in the fig. 4.7.7.

Calculation of weld seam is performed it the table 4.7.2.

Table 4.7.2 Weld seam calculation (extract from RFEM 6.02	Table 4.7.2 Weld seam calcula	tion (extract from	RFEM 6.02)
---	-------------------------------	--------------------	------------

Design	Loading	Stress	Stress [N	N/mm²]	Stress	Note
Situation	No.	Туре	Existing	Limit	Ratio η []	Note
DS1	CO2	σw	-127.252	251.500	0.506	β _w =0.9 for S355 steel
DS1	CO2	τ _w	3.391			
DS1	CO2	σ _{⊥,+45°}	92.162			
DS1	CO2	τ⊥,+45°	96.267			
DS1	CO2	σ ⊥,-45°	96.267			
DS1	CO2	τ _{⊥,-45°}	92.162			
DS1	CO2	τ _{ll}	17.390			
DS1	CO2	σ v,w,+45°,Ed	192.294			
DS1	CO2	σ _{V,w,-45°,Ed}	188.228			
DS1	CO2	σ _{max}	-127.252	251.500	0.506	

4.7.3 Bolt calculation (bracket plates)

Bolts fixing bracket plates have to be calculated (see fig. 4.7.8). Designed bolt is M10 DIN 931. Bolt class is 8.8.

Fig. 4.7.8 Bolt to calculate

Calculation of the bolt according to the EN 1993-1-8 (table 3.4) is performed it the table 4.7.4.

|--|

Bolt M10 calculation bracket KR-7					
Bolt size	M10				
Bolt class	8.8				
f _{yb}	640	MPa	Yield strength		
f _{ub}	800	MPa	Ultimate tensile strength		
	Sh	near resis	tance per shear plane calculation		
F _{v,Ed}	10.39	kN	The design shear force per bolt for the ultimate limit state		
F _{v,Rd}	22.27	kN	The shear resistance per bolt		
F v,Ed/F v,Rd	0.47		Criteria F _{v,Ed} ≤ F _{v,Rd} is performed		
α_{V}	0.6		Factor for bolt class 8.8		
As	58.0	mm²	Stress area (threaded part)		
γм2	1.25		Safety factor - EN 1993-1-18		
		Веа	ring resistance calculation		
F _{b,Ed}	10.39	kN	The design shear force per bolt for the ultimate limit state		
F b,Rd	35.64	kN	The design bearing resistance per bolt		
F b,Ed/F b,Rd	0.29		Criteria F _{v,Ed} ≤ F _{b,Rd} is performed		
Material			Steel S355		
fu	490	MPa			
d	10	mm	Diametr of bolt		
t	10.00	mm	Total thickness of crumpled plates		
k1	2.50				
α _b	0.61				
	0.60		Factor for slotted holes		

Tension resistance calculation						
	The design shear force per bolt for the ultimate limit					
F _{t,Ed}	0.60	kN	state			
F _{t,Rd}	33.41	kN	The design bearing resistance per bolt			
F t,Ed/F t,Rd	0.02		Criteria F _{v,Ed} ≤ F _{b,Rd} is performed			
K ₂	0.9					

4.7.4 Anchor calculation (bracket to concrete wall)

Anchorage calculation below is based on several assumptions on reinforced concrete parameters.

Anchor calculation was performed in the program Hilti PROFIS Engineering 3.0.8.

The total capacity of anchorage and reinforced concrete connection is indicative and must be checked by concrete designer.

Fig. 4.7.9 Bolt to calculate

0.11 kN 🖕

Fig. 4.7.10 Support reactions from bracket KR-7 (extract from RFEM 6.02)

1 Input data

1 Input data		
Anchor type and size:	HUS4-H 10 h_nom3	
Return period (service life in years):	50	•
Item number:	2293556 HUS4-H 10x100 45/25/15	
Effective embedment depth:	h _{ef} = 68.0 mm (h _{ef,ETA} = 68.0 mm), h _{nom} = 90.0 mm	
Material:	Carbon Steel	
Approval No.:	ETA-20/0867	
Issued I Valid:	14/07/2022 -	
Proof:	Design Method EN 1992-4, Mechanical	
Stand-off installation:	e _b = 0.0 mm (no stand-off); t = 10.0 mm	
Baseplate ^{CBFEM} :	l _x x l _y x t = 100.0 mm x 170.0 mm x 10.0 mm;	
Profile:	Flat bar, 75 x 10; (L x W x T) = 75.0 mm x 10.0 mm	
Base material:	uncracked concrete, C25/30, $\rm f_{c,oyl}$ = 25.00 N/mm²; h safety factor γ_{c} = 1.500	= 1,000.0 mm, User-defined partial material
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	No reinforcement or Reinforcement spacing >= 150	mm (any Ø) or >= 100 mm (Ø <= 10 mm)
	no longitudinal edge reinforcement	

CBFEM - The anchor calculation is based on a component-based Finite Element Method (CBFEM)

Geometry [mm] & Loading [kN, kNm]

Input data and results	must be checked for conformity with the existing conditions and for plausibility!	
PROFIS Engineering (c) 2003-2023 Hilli AG, FL-9494 Schaan Hilli is a registered Trademark of Hilli AG, Schaan	

1.1	1.1 Load combination						
	Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]	
_	1	Kombinacja 1	N = 18.500; V _x = 5.000; V _y = -0.200;	no	no	98	
			$M_x = 0.000; M_y = 0.000; M_z = 0.000;$				

2 Load case/Resulting anchor forces

Anchor reactions [kN] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 14.578 2.482 2.482 -0.044 2 14.572 2.523 2.518 -0.156

resulting tension force in (x/y)=(-10.0/-0.0): 29.150 [kN] resulting compression force in (x/y)=(-28.4/-0.1): 11.315 [kN]

Anchor forces are calculated based on a component-based Finite Element Method (CBFEM)

3 Tension load (EN 1992-4, Section 7.2.1)

	Load [kN]	Capacity [kN]	Utilization B _N [%]	Status
Steel failure*	14.578	36.667	40	OK
Pull-out failure*	14.578	20.561	71	OK
Concrete Breakout failure**	29.150	31.643	93	ОК
Splitting failure**	29.150	45.784	64	ОК

* highest loaded anchor **anchor group (anchors in tension)

3.1 Steel failure

$N_{Ed} \le N_{Rd,s} = \frac{N_{Rk,s}}{\gamma_{M,s}}$	EN 1992-4, Table 7.1
---	----------------------

N _{Rk,s} [kN]	$\gamma_{M,s}$	N _{Rd,s} [kN]	N _{Ed} [kN]
55.000	1.500	36.667	14.578

3.2 Pull-out failure

...

$N_{Ed} \le N_{Rd,p} = \frac{\psi_c \cdot N_{Rk,p}}{\gamma_{M,p}}$	EN 1992	2-4, Table 7.1		
N _{Rkp} [kN]	Ψc	Υ _{M.P}	N _{Rd,p} [kN]	N _{Ed} [kN]
27.585	1.118	1.500	20.561	14.578

3.3 Concrete Breakout failure

$\begin{split} N_{Rkc} &= N_{Rkc}^{0} \cdot \frac{A_{cN}}{A_{cN}^{0}} \cdot \Psi_{sN} \cdot \Psi_{re,N} \cdot \Psi_{ec1,N} \cdot \Psi_{ec2,N} \cdot \Psi_{M,N} & \text{EN 1992-4, Eq. (7.1)} \\ N_{Rkc}^{0} &= k_{1} \cdot \sqrt{t_{ck}} \cdot h_{ef}^{1.5} & \text{EN 1992-4, Eq. (7.2)} \\ A_{cN}^{0} &= s_{\alpha N} \cdot s_{cr,N} & \text{EN 1992-4, Eq. (7.3)} \\ \Psi_{sN} &= 0.7 + 0.3 \cdot \frac{C}{C_{\alpha N}} \leq 1.00 & \text{EN 1992-4, Eq. (7.4)} \\ \Psi_{ec1,N} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{\alpha N}}\right)} \leq 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{ec2,N} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{\alpha N}}\right)} \leq 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{MN} &= 1 & \text{EN 1992-4, Eq. (7.7)} \end{split}$	$N_{Ed} \leq N_{Rd,c}$	$= \frac{N_{Rk,c}}{\gamma_{M,c}}$	EN 1992-4, Table 7.1
$\begin{split} N_{Rkc}^{0} &= k_{1} \cdot \sqrt{t_{ck}} \cdot h_{el}^{1.5} & \text{EN 1992-4, Eq. (7.2)} \\ A_{cN}^{0} &= s_{\alpha N} \cdot s_{cr,N} & \text{EN 1992-4, Eq. (7.3)} \\ \Psi_{sN} &= 0.7 + 0.3 \cdot \frac{c}{c_{\alpha,N}} \le 1.00 & \text{EN 1992-4, Eq. (7.4)} \\ \Psi_{ecl,N} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{\alpha N}}\right)} \le 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{ec2,N} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{\alpha N}}\right)} \le 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{MN} &= 1 & \text{EN 1992-4, Eq. (7.7)} \end{split}$	N _{Rke}	$= N_{Rk,c}^{0} \cdot \frac{A_{cN}}{A_{cN}^{0}} \cdot \psi_{sN} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{M,N}$	EN 1992-4, Eq. (7.1)
$\begin{array}{ll} A_{c_{N}}^{0} & = s_{\alpha N} \cdot s_{cr,N} & \text{EN 1992-4, Eq. (7.3)} \\ \psi_{sN} & = 0.7 + 0.3 \cdot \frac{C}{C_{\alpha,N}} \leq 1.00 & \text{EN 1992-4, Eq. (7.4)} \\ \psi_{ec1,N} & = \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{\alpha,N}}\right)} \leq 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \psi_{ec2,N} & = \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{\alpha,N}}\right)} \leq 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \psi_{MN} & = 1 & \text{EN 1992-4, Eq. (7.7)} \end{array}$	NRKO	$= \mathbf{k}_1 \cdot \sqrt{\mathbf{f}_{ck}} \cdot \mathbf{h}_{ef}^{1,5}$	EN 1992-4, Eq. (7.2)
$\begin{split} \Psi_{s,N} &= 0.7 + 0.3 \cdot \frac{c}{c_{\sigma,N}} \le 1.00 & \text{EN 1992-4, Eq. (7.4)} \\ \Psi_{ec1,N} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{\sigma,N}}\right)} \le 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{ec2,N} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{\sigma,N}}\right)} \le 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{M,N} &= 1 & \text{EN 1992-4, Eq. (7.7)} \end{split}$	A _{CN}	= s _{o,N} · s _{or,N}	EN 1992-4, Eq. (7.3)
$\begin{split} \Psi_{\text{ecl,N}} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{\sigma,N}}\right)} \le 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{\text{ecl,N}} &= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{\sigma,N}}\right)} \le 1.00 & \text{EN 1992-4, Eq. (7.6)} \\ \Psi_{\text{MN}} &= 1 & \text{EN 1992-4, Eq. (7.7)} \end{split}$	Ψ _{sN}	$= 0.7 + 0.3 \cdot \frac{c}{c_{\sigma,N}} \le 1.00$	EN 1992-4, Eq. (7.4)
$\Psi_{ec2,N} = \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{\sigma,N}}\right)} \le 1.00 \qquad \text{EN 1992-4, Eq. (7.6)}$ $\Psi_{M,N} = 1 \qquad \text{EN 1992-4, Eq. (7.7)}$	Ψ _{ec1,N}	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{\sigma,N}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\Psi_{M,N} = 1$ EN 1992-4, Eq. (7.7)	Ψ _{ec2,N}	$=\frac{1}{1+\left(\frac{2\cdot e_{N,2}}{8-v}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
	Ψ _{M,N}	= 1	EN 1992-4, Eq. (7.7)

A _{en} [mm ²]	A ⁰ _{c,N} [mm ²]	c _{ơ,N} [mm]	s _{cr,N} [mm]	f _{e,cyl} [N/mm ²]		
64,056	41,616	102.0	204.0	25.00		
e _{c1.N} [mm]	Ψ _{ec1,N}	e _{c2.N} [mm]	Ψ _{ec2,N}	$\Psi_{s,N}$	$\Psi_{\text{re,N}}$	
0.0	1.000	0.0	1.000	1.000	1.000	-
z [mm]	$\Psi_{M,N}$	k,	N ⁰ _{Rk,c} [kN]	$\gamma_{M,c}$	N _{Rd,c} [kN]	N _{Ed} [kN]
18.4	1.000	11.000	30.841	1.500	31.643	29.150

Group anchor ID

1, 2

3.4 Splitting failure

$N_{Ed} \leq N_{Rd,sp}$	$=\frac{N_{Rk,sp}}{\gamma_{Msp}}$	EN 1992-4, Table 7.1
N _{Rksp}	$= N_{Rk,sp}^{0} \cdot \frac{A_{c_{i}N}}{A_{c_{i}N}^{0}} \cdot \psi_{s_{i}N} \cdot \psi_{re_{i}N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{h,sp}$	EN 1992-4, Eq. (7.23)
N _{Rksp}	= N ⁰ _{Rk,sp,ETA}	
A _{GN}	$= s_{\sigma,sp} \cdot s_{\sigma,sp}$	EN 1992-4, Eq. (7.3)
Ψ _{sN}	$= 0.7 + 0.3 \cdot \frac{c}{c_{\sigma, sp}} \le 1.00$	EN 1992-4, Eq. (7.4)
Ψ _{ec1,N}	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{cr,sp}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
Ψ _{ed2,N}	$=\frac{1}{1+\left(\frac{2\cdot e_{N,2}}{s_{cr,sp}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
Ψ _{h,sp}	$= \left(\frac{h}{h_{\min}}\right)^{2/3} \le \max\left\{1; \left(\frac{h_{ef} + 1.5 \cdot c_1}{h_{\min}}\right)^{2/3}\right\} \le 2.00$	EN 1992-4, Eq. (7.24)
A _{-w} (mr	m ²] A ⁰ _{C.N} (mm ²] c _{mm} (mm) s _{mm}	[mm] Y has famit [N/mm ²]

	A _{cN} [mm]	Ac,N [mm]	c _{or.sp} [mm]	s _{cr.sp} [mm]	Ψh,sp	f _{eeyl} [N/mm]	
	75,039	50,355	112.2	224.4	1.494	25.00	
	e _{c1,N} [mm]	Ψ _{ec1,N}	e _{c2,N} [mm]	Ψ _{ec2N}	$\Psi_{s,N}$	Ψ _{re,N}	k ₁
	0.0	1.000	0.0	1.000	1.000	1.000	11.000
_	N ⁰ _{Rksp} [kN]	Υ _{M,sp}	N _{Rd,sp} [kN]	N _{Ed} [kN]			
	30.841	1.500	45.784	29.150			

Group anchor ID

1, 2

4 Shear load (EN 1992-4, Section 7.2.2)

	Load [kN]	Capacity [kN]	Utilization B _v [%]	Status
Steel failure (without lever arm)*	2.523	20.480	13	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout failure*	2.523	31.647	8	OK
Concrete edge failure in direction x+**	5.004	19.697	26	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel failure (without lever arm)

$V_{Ed} \leq V_{Rd,s} = \frac{V_{Rk,s}}{\gamma_{M,s}}$ EN 1992-4, Table 7.2						
$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0$	EN 1992	-4, Eq. (7.35)				
V ⁰ _{Rks} [kN]	k ₇	V _{Rks} [kN]	Υ _{M,s}	V _{Rd,s} [kN]	V _{Ed} [kN]	_
32.000	0.800	25.600	1.250	20.480	2.523	

4.2 Pryout failure

$V_{Ed} \leq V_{Rd,qp}$	$=\frac{V_{Rk,qp}}{V_{rt}}$	EN 1992-4, Table 7.2
VRkep	= k ₈ · N _{Rk,c}	EN 1992-4, Eq. (7.39a)
N _{Rkc}	$= N_{Rkc}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{M,N}$	EN 1992-4, Eq. (7.1)
NRkc	$= k_1 \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1,5}$	EN 1992-4, Eq. (7.2)
A _{GN}	= s _{cr,N} · s _{cr,N}	EN 1992-4, Eq. (7.3)
Ψ _s ,N	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \le 1.00$	EN 1992-4, Eq. (7.4)
Ψ _{ec1,N}	$= \frac{1}{1 + \left(\frac{2 \cdot e_{V,1}}{s_{cr,N}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
Ψ _{ec2,N}	$=\frac{1}{1+\left(\frac{2 \cdot e_{V,2}}{s_{rrN}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
Ψ _{M,N}	= 1	EN 1992-4, Eq. (7.7)

A _{cN} [mm ²]	A _{c,N} [mm ²]	c _{ơ,N} [mm]	s _{er,N} [mm]	k _a	f _{ecyl} [N/mm ²]	
32,028	41,616	102.0	204.0	2.000	25.00	
e _{c1,V} [mm]	Ψ _{ec1,N}	e _{c2,V} [mm]	Ψ _{ec2N}	$\Psi_{s,N}$	$\Psi_{\text{re,N}}$	$\Psi_{M,N}$
0.0	1.000	0.0	1.000	1.000	1.000	1.000
k ₁	N ⁰ _{Rk,c} [kN]	Υ _{M,c,p}	V _{Rd,qp} [kN]	V _{Ed} [kN]	_	
11.000	30.841	1.500	31.647	2.523	_	

Group anchor ID

2

4.3 Concrete edge failure in direction x+

$V_{Ed} \leq V_{Rd}$	$_{i,c} = \frac{V_{Rk,c}}{\gamma_{M,c}}$			EN 1992-4	Table 7.2				
V _{Rk}	$= k_T \cdot V_{Rk,c}^0 \cdot \frac{A}{A}$	<u>αν</u> ·ψ _{sv} ·ψ _{h,v}	$\cdot \psi_{\alpha, V} \cdot \psi_{ec, V} \cdot \psi_{re, V}$	EN 1992-4	EN 1992-4, Eq. (7.40)				
V ⁰ _{Rk,c}	$= k_9 \cdot d_{nom}^{\alpha} \cdot \int_{0}^{\infty} \sqrt{f_{ck}} \cdot c_1^{1.5}$			EN 1992-4	EN 1992-4, Eq. (7.41)				
α	$= 0.1 \cdot \left(\frac{l_1}{c_1}\right)^{0.6}$,		EN 1992-4	Eq. (7.42)				
β	$= 0.1 \cdot \left(\frac{d_{nom}}{C_{i}}\right)$	0,2		EN 1992-4	, Eq. (7.43)				
A _{cv}	$= 4.5 \cdot c_1^2$			EN 1992-4	Eq. (7.44)				
Ψ _{s,V}	= 0.7 + 0.3 · 1	$\frac{c_2}{.5 \cdot c_1} \le 1.00$		EN 1992-4	Eq. (7.45)				
$\psi_{h,V}$	$=\left(\frac{1.5\cdot c_1}{h}\right)^{0.5}$	≥ 1.00		EN 1992-4	EN 1992-4, Eq. (7.46)				
ΨeqV	$=\frac{1}{1+\left(\frac{2\cdot e_{V}}{2}\right)}$	- <u>≤</u> 1.00		EN 1992-4	Eq. (7.47)				
$\psi_{\alpha,V}$	$= \sqrt{\frac{(3 \cdot c_1)^2}{(\cos \alpha_v)^2}}$	1 + (0.5 · sin α _v)		EN 1992-4	, Eq. (7.48)				
կ (ո	nm] d,	_{nom} [mm]	k ₉	α	β	f _{eeyt} [N/mm ²]			
68	3.0	10.00	2.400	0.078	0.062	25.00			
C ₁ [r	mm] A	_{ev} [mm ²]	A ^o _{c,V} [mm ²]						
11	3.0	76,106	57,460						
ψ	sV	Ψ _{h,V}	α _ν [°]	$\Psi_{\alpha,V}$	e _{e v} [mm]	Ψ ec,V	Ψre,V		
1.0	000	1.000	2.29	1.001	0.4	0.998	1.000		
Verk	, [kN]	k _T	γ _{M,c}	V _{Rd.c} [kN]	V _{Ed} [kN]				
22.	346	1.0	1.500	19.697	5.004	_			

5 Combined tension and shear loads (EN 1992-4, Section 7.2.3)

Steel failure

 $(\beta_N + \beta_V) / 1.2 \le 1.0$

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid baseplates as per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the baseplate are not considered the baseplate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required baseplate thickness with CBFEM to limit the stress of the baseplate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- In general, the conditions given in ETAG 001, Annex C, section 4.2.2.1 and 4.2.2.3 b) are not fulfilled because the diameter of the clearance hole in the fixture acc. to Annex 3, Table 3 is greater than the values given in Annex C, Table 4.1 and AS5126 for the corresponding diameter of the anchor. Therefore the design resistance for anchor groups is limited to twice the steel resistance (of a single anchor) in accordance with the approval.
- Checking the transfer of loads into the base material is required in accordance with EN 1992-4, Annex A!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 6.1 of EN 1992-4! For larger diameters
 of the clearance hole see section 6.2.2 of EN 1992-4!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- For the determination of the ψ_{rev} (concrete edge failure) the minimum concrete cover defined in the design settings is used as the concrete cover of the edge reinforcement.
- · Please ensure that the fastening system is statically indetermined
- The anchor design methods in PROFIS Engineering require rigid baseplates, as per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means that the baseplate should be sufficiently rigid to prevent load re-distribution to the anchors due to elastic/plastic displacements. The user accepts that the baseplate is considered close to rigid by engineering judgment."
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!